Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum.

نویسندگان

  • Andreas Bender
  • Giel G van Dooren
  • Stuart A Ralph
  • Geoffrey I McFadden
  • Gisbert Schneider
چکیده

A neural network approach for the prediction of mitochondrial transit peptides (mTPs) from the malaria-causing parasite Plasmodium falciparum is presented. Nuclear-encoded mitochondrial protein precursors of P. falciparum were analyzed by statistical methods, principal component analysis and supervised neural networks, and were compared to those of other eukaryotes. A distinct amino acid usage pattern has been found in protein encoding regions of P. falciparum: glycine, alanine, tryptophan and arginine are under-represented, whereas isoleucine, tyrosine, asparagine and lysine are over-represented compared to the SwissProt average. Similar patterns were observed in mTPs of P. falciparum. Using principal component analysis (PCA), mTPs from P. falciparum were shown to differ considerably from those of other organisms. A neural network system (PlasMit) for prediction of mTPs in P. falciparum sequences was developed, based on the relative amino acid frequency in the first 24 N-terminal amino acids, yielding a Matthews correlation coefficient of 0.74 (90% correct prediction) in a 20-fold cross-validation study. This system predicted 1177 (22%) mitochondrial genes, based on 5334 annotated genes in the P. falciparum genome. A second network with the same topology was trained to give more conservative estimate. This more stringent network yielded a Matthews correlation coefficient of 0.51 (84% correct prediction) in a 10-fold cross-validation study. It predicted 381 (7.1%) mitochondrial genes, based on 5334 annotated genes in the P. falciparum genome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary pressures on apicoplast transit peptides.

Malaria parasites (species of the genus Plasmodium) harbor a relict chloroplast (the apicoplast) that is the target of novel antimalarials. Numerous nuclear-encoded proteins are translocated into the apicoplast courtesy of a bipartite N-terminal extension. The first component of the bipartite leader resembles a standard signal peptide present at the N-terminus of secreted proteins that enter th...

متن کامل

RESEARCH ARTICLES Evolutionary Pressures on Apicoplast Transit Peptides

Malaria parasites (species of the genus Plasmodium) harbor a relict chloroplast (the apicoplast) that is the target of novel antimalarials. Numerous nuclear-encoded proteins are translocated into the apicoplast courtesy of a bipartite N-terminal extension. The first component of the bipartite leader resembles a standard signal peptide present at the N-terminus of secreted proteins that enter th...

متن کامل

Evolution of malaria parasite plastid targeting sequences.

The transfer of genes from an endosymbiont to its host typically requires acquisition of targeting signals by the gene product to ensure its return to the endosymbiont for function. Many hundreds of plastid-derived genes must have acquired transit peptides for successful relocation to the nucleus. Here, we explore potential evolutionary origins of plastid transit peptides in the malaria parasit...

متن کامل

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

Genotyping of C and F Regions of Plasmodium Falciparum EBA-175 in South-East of Iran

Abstract Background and Objective: The Plasmodium falciparum EBA-175, via Sialic acid dependent glycophorin A, binds to red blood cells and thus plays a critical role in cell invasion. Some part of second allele in its gene encoding in FCR-3 (Section F) and CAMP (Section C) can be found. This study aimed to determine the prevalence of Plasmodium falciparum EBA-175KD alleles in southeastern I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and biochemical parasitology

دوره 132 2  شماره 

صفحات  -

تاریخ انتشار 2003